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Abstract: We critically reexamine the standard applications of the method of kinemat-

ical endpoints for sparticle mass determination. We consider the typical decay chain in

supersymmetry (SUSY) q̃ → χ̃0
2 → ℓ̃ → χ̃0

1, which yields a jet j, and two leptons ℓ±n and

ℓ∓f . The conventional approaches use the upper kinematical endpoints of the individual

distributions mjℓℓ, mjℓ(lo) = min{mjℓn
,mjℓf

} and mjℓ(hi) = max{mjℓn
,mjℓf

}, all three of

which suffer from parameter space region ambiguities and may lead to multiple solutions

for the SUSY mass spectrum. In contrast, we do not use mjℓℓ, mjℓ(lo) and mjℓ(hi), and

instead propose a new set of (infinitely many) variables whose upper kinematic endpoints

exhibit reduced sensitivity to the parameter space region. We then outline an alternative,

much simplified procedure for obtaining the SUSY mass spectrum. In particular, we show

that the four endpoints observed in the three distributions m2
ℓℓ, m2

jℓn
∪m2

jℓf
and m2

jℓn
+m2

jℓf

are sufficient to completely pin down the squark mass mq̃ and the two neutralino masses

mχ̃0
2

and mχ̃0
1
, leaving only a discrete 2-fold ambiguity for the slepton mass mℓ̃. This re-

maining ambiguity can be easily resolved in a number of different ways: for example, by

a single additional measurement of the kinematic endpoint of any one out of the many re-

maining 1-dimensional distributions at our disposal, or by exploring the correlations in the

2-dimensional distribution of m2
jℓn

∪ m2
jℓf

versus m2
ℓℓ. We illustrate our method with two

examples: the LM1 and LM6 CMS study points. An additional advantage of our method

is the expected improvement in the accuracy of the SUSY mass determination, due to the

multitude and variety of available measurements.
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1 Introduction

SUSY is a primary target of the LHC searches for new physics beyond the Standard Model

(BSM). In SUSY models with conserved R-parity the superpartners are produced in pairs
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Figure 1. The typical cascade decay chain under consideration in this paper. Here D, C, B and

A are new BSM particles, while the corresponding SM decay products are: a QCD jet j, a “near”

lepton ℓ±n and a “far” lepton ℓ∓f . This chain is quite common in SUSY, with the identification

D = q̃, C = χ̃0
2, B = ℓ̃ and A = χ̃0

1, where q̃ is a squark, ℓ̃ is a slepton, and χ̃0
1 (χ̃0

2) is the first

(second) lightest neutralino. In what follows we shall quote our results in terms of the D mass mD

and the three dimensionless squared mass ratios RCD, RBC and RAB defined in eq. (1.6).

and each one decays through a cascade decay chain down to the lightest superpartner (LSP).

If the LSP is the lightest neutralino χ̃0
1, it escapes detection, making it rather difficult to

reconstruct directly the preceding superpartners and thus measure their masses and spins.

In recognition of this fact, in recent years there has been an increased interest in developing

new techniques for mass [1–49] and spin [50–76] measurements in such SUSY-like missing

energy events.

Roughly speaking, there are three basic types of mass determination methods in

SUSY.1 In this paper we concentrate on the classic method of kinematical endpoints [1].

Following the previous SUSY studies, for illustration of our results we shall use the generic

decay chain D → jC → jℓ±n B → jℓ±n ℓ∓f A shown in figure 1. Here D, C, B and A are new

BSM particles with masses mD, mC , mB and mA. Their corresponding SM decay products

are: a QCD jet j, a “near” lepton ℓ±n and a “far” lepton ℓ∓f . This decay chain is quite

common in SUSY, with the identification D = q̃, C = χ̃0
2, B = ℓ̃ and A = χ̃0

1, where q̃ is a

squark, ℓ̃ is a slepton, and χ̃0
1 (χ̃0

2) is the first (second) lightest neutralino. However, our

analysis is not limited to SUSY only, since the chain in figure 1 also appears in other BSM

scenarios, e.g. Universal Extra Dimensions [77]. For concreteness, we shall assume that all

three decays exhibited in figure 1 are two-body, i.e. we shall consider the mass hierarchy

mD > mC > mB > mA > 0. (1.1)

This presents the most challenging case, in which one has to determine all four masses mD,

mC , mB and mA.

The idea of the kinematic endpoint method is very simple. Given the SM decay

1For a recent study representative of each method, see refs. [43, 47, 49].
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products j, ℓn and ℓf exhibited in figure 1, form the invariant mass2 of every possible

combination, mℓℓ, mjℓn
, mjℓf

, and mjℓℓ, plot the resulting distributions and measure the

corresponding upper kinematic endpoints [1, 7, 12]

(mmax
ℓℓ )2 = m2

D RCD (1 − RBC) (1 − RAB); (1.2)
(

mmax
jℓn

)2
= m2

D (1 − RCD) (1 − RBC) ; (1.3)
(

mmax
jℓf

)2
= m2

D (1 − RCD) (1 − RAB) ; (1.4)

(

mmax
jℓℓ

)2
=







































m2
D(1 − RCD)(1 − RAC), for RCD < RAC , case (1,−),

m2
D(1 − RBC)(1 − RABRCD), for RBC < RABRCD, case (2,−),

m2
D(1 − RAB)(1 − RBD), for RAB < RBD, case (3,−),

m2
D

(

1 −
√

RAD

)2
, otherwise, case (4,−).

,(1.5)

Here and below we follow the notation and conventions of ref. [47], i.e. we write all results

in terms of an overall mass scale (given by the mass mD of the heaviest BSM particle D)

and three dimensionless squared mass ratios

Rij ≡
m2

i

m2
j

, i, j ∈ {A,B,C,D} . (1.6)

Note that there are only three independent ratios in (1.6). We shall take those to be RAB ,

RBC , and RCD (see figure 1), and their definition domain will be the interval (0, 1).3

In spite of their transparent theoretical meaning, the set of four endpoints (1.2)–

(1.5) by themselves have (justifiably) never been used as the sole basis for a SUSY mass

determination analysis. This is due to three generic problems, which are all very well

known, and are separately reviewed in the next three subsections 1.1, 1.2 and 1.3. Our

new approach to resolving these three problems, and the outline of the rest of the paper

are presented in section 1.4.

1.1 Near-far lepton ambiguity

The first problem is that one cannot differentiate between the “near” and “far” leptons ℓn

and ℓf on an event-by-event basis. Since all decays in figure 1 are prompt, both leptons

point back to the primary interaction vertex and there is no way to tell which came first and

which came second. Consequently, one cannot separately construct the individual mjℓn
and

mjℓf
invariant mass distributions, whose upper endpoints would be given by (1.3) and (1.4).

This problem has motivated most of the previous invariant mass studies in the literature,

2We shall see below that the formulas simplify considerably if we use invariant masses squared instead.

This distinction is not central to our analysis.
3As seen in eq. (1.5), at times we shall also utilize one or more of the other three ratios, RAC , RAD

and RBD, whenever this will lead to a simplification of the formulas. Of course, the latter three ratios are

related to our preferred set {RAB , RBC , RCD} due to the transitivity property RijRjk = Rik.

– 3 –
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beginning with [7], to introduce an alternative definition of the two jℓ distributions, simply

by ordering the two mjℓ entries in each event by invariant mass as follows

mjℓ(lo) ≡ min
{

mjℓn
,mjℓf

}

, (1.7)

mjℓ(hi) ≡ max
{

mjℓn
,mjℓf

}

. (1.8)

Both of the newly defined quantities mjℓ(lo) and mjℓ(hi) also exhibit upper kinematic end-

points (mmax
jℓ(lo) and mmax

jℓ(hi), correspondingly). Since the individual mjℓ(lo) and mjℓ(hi) distri-

butions are observable, their endpoints are experimentally measurable and can be related

to the underlying SUSY mass spectrum as follows [7, 12]

(

mmax
jℓ(lo)

)2
=































(

mmax
jℓn

)2
, for (2 − RAB)−1 < RBC < 1, case (−, 1),

(

mmax
jℓ(eq)

)2
, for RAB < RBC < (2 − RAB)−1, case (−, 2),

(

mmax
jℓ(eq)

)2
, for 0 < RBC < RAB , case (−, 3);

(1.9)

(

mmax
jℓ(hi)

)2
=































(

mmax
jℓf

)2
, for (2 − RAB)−1 < RBC < 1, case (−, 1),

(

mmax
jℓf

)2
, for RAB < RBC < (2 − RAB)−1, case (−, 2),

(

mmax
jℓn

)2
, for 0 < RBC < RAB, case (−, 3);

(1.10)

where
(

mmax
jℓ(eq)

)2
= m2

D (1 − RCD) (1 − RAB) (2 − RAB)−1 (1.11)

and mmax
jℓn

and mmax
jℓf

were already defined in (1.3) and (1.4), correspondingly. With this

approach, the original set of 4 endpoints in eqs. (1.2)–(1.5) is replaced by

mmax
ℓℓ ,mmax

jℓℓ ,mmax
jℓ(lo),m

max
jℓ(hi). (1.12)

In contrast to this conventional approach in the literature, we shall adopt a very

different attitude towards resolving the problem of the near-far lepton ambiguity. We will

do the simplest possible thing, namely, we shall do nothing. We shall never ask the question

“which lepton was ℓn and which one was ℓf?”. We shall also not use the ordering (1.7), (1.8).

Instead, we shall simply take the two mjℓ entries in each event, and always treat them in

a symmetric fashion. For example, any observable invariant mass distribution that we

will build out of the two measured quantities mjℓn
and mjℓf

should be invariant under

the symmetry

mjℓn
↔ mjℓf

. (1.13)

The advantages of our approach may not be immediately obvious at this point, but will

become clear in the process of our mass determination analysis in section 3 below.

– 4 –
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1.2 Insufficient number of measurements

The second problem associated with the original set of four measurements (1.2)–(1.5), as

well as the alternative set (1.12), is that the measured endpoints may not all be independent

from each other. Indeed, there are certain regions of parameter space where one finds the

following correlation [12]

(

mmax
jℓℓ

)2
=

(

mmax
jℓ(hi)

)2
+ (mmax

ℓℓ )2 . (1.14)

In this case, the four measurements (1.12) are clearly insufficient to pin down all four inde-

pendent input parameters mD, mC , mB and mA. Therefore, one has to measure an addi-

tional independent endpoint. To this end, it has been suggested to consider the constrained

distribution mjℓℓ(θ> π
2
), which exhibits a useful lower kinematic endpoint mmin

jℓℓ(θ> π
2
) [7]

(

mmin
jℓℓ(θ> π

2
)

)2
=

1

4
m2

D

{

(1 − RAB)(1 − RBC)(1 + RCD) (1.15)

+2(1−RAC)(1−RCD)−(1−RCD)
√

(1+RAB)2(1+RBC)2 − 16RAC

}

.

The distribution mjℓℓ(θ> π
2
) is nothing but the usual mjℓℓ distribution over a subset of the

original events, subject to the additional dilepton mass constraint

mmax
ℓℓ√
2

< mℓℓ < mmax
ℓℓ . (1.16)

In the rest frame of particle B, this cut implies the following restriction on the opening

angle θ between the two leptons [6]

θ >
π

2
, (1.17)

thus justifying the notation for mjℓℓ(θ> π
2
).

The advantage of the “threshold” endpoint measurement (1.15) is that it is always

independent of the other four measurements in (1.12). As a result, it would appear that

the enlarged set of five kinematic endpoint measurements

mmax
ℓℓ ,mmax

jℓℓ ,mmax
jℓ(lo),m

max
jℓ(hi),m

min
jℓℓ(θ> π

2
) (1.18)

should be in principle sufficient to determine all four unknown masses (see, however, ref. [47]

and section 1.3 below).

Unfortunately, the “threshold” (1.15) also suffers from certain disadvantages, which are

mostly of experimental nature. It is generally expected that the experimental precision on

the determination of the lower kinematic endpoint (1.15) will be rather inferior compared

to the precision on the other four upper kinematic endpoints (1.12) [12]. There are several

generic reasons for such a pessimistic attitude. First, the region in the mjℓℓ(θ> π
2
) distribu-

tion near its lower endpoint (1.15) is rather sparsely populated, resulting in a shallow edge

and sizable statistical errors. To make matters worse, the mjℓℓ(θ> π
2
) distribution near its

lower edge is a convex function [19], which makes it even more difficult to tell where the

– 5 –
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signal ends and the tails from various sources begin [12]. Finally, the low mass region of

almost any invariant mass distribution in SUSY is generally associated with larger SM (as

well as SUSY combinatorial) backgrounds compared to its high mass counterpart.

Overall we find all these disadvantages sufficiently convincing so that we will drop

the measurement (1.15) altogether and will never use it in the course of our analysis in

section 3 below. We will be justified in doing so, since the linear dependence problem (1.14),

which has plagued previous studies and was the prime motivation for introducing the

mmin
jℓℓ(θ> π

2
) measurement in the first place, will have no effect on our analysis. In fact, we

will not be using the endpoint measurement mmax
jℓ(hi) (for the reasons given in the previous

subsection 1.1) and we will not be using the endpoint measurement mmax
jℓℓ (for the reasons

given in the following subsection 1.3). Once these two problematic measurements are

removed from consideration, the linear dependence problem (1.14) does not arise, and the

“threshold” measurement (1.15) is not central to the analysis any more.

1.3 Parameter space region ambiguity

The third problem with the conventional set of measurements (1.18) is immediately obvious

from the defining equations (1.5), (1.9) and (1.10) for the kinematic endpoints mmax
jℓℓ , mmax

jℓ(lo),

and mmax
jℓ(hi), correspondingly. One can see that the relevant expressions are piecewise-

defined functions, i.e. they depend on the values of the independent variables mA, mB, mC

and mD. For example, there are four different cases for mmax
jℓℓ , and three different cases for

the pair of (mmax
jℓ(lo),m

max
jℓ(hi)). Altogether, these give rise to 9 different cases4 which must be

separately considered [12, 47]. Of course, this represents a problem, since the masses are

a priori unknown, and it is not clear which case is the relevant one. Barring any model-

dependent assumptions, one is forced to consider all possibilities, obtain a solution for the

spectrum, and only at the very end, test whether the solution falls within the parameter

space applicable for the case at hand. This procedure may often result in several alternative

solutions [12, 47, 78–82]. In fact, ref. [47] recently proved that there exists a sizable

parameter space region in which even the full set of measurements (1.18) would always

yield two alternative solutions, even under ideal experimental conditions. The problem

is further exacerbated by the inevitable experimental errors on the measurements (1.18),

which would allow for an even larger number of “fake” or “duplicate” solutions [47, 79, 80].

Having identified the root of the duplication problem as the piecewise definition of the

mathematical formulas in (1.5), (1.9), (1.10), our solution to the problem will be again very

simple and conservative. We will simply avoid using any kinematic endpoints which are

given in terms of piecewise-defined expressions. This requirement automatically eliminates

from consideration the three conventional endpoints mmax
jℓℓ , mmax

jℓ(lo), and mmax
jℓ(hi). Since we

already gave up on mmin
jℓℓ(θ> π

2
) in the previous subsection, this leaves mmax

ℓℓ as the only

measurement out of the conventional set (1.18) that we shall use in our analysis. This

is perhaps the most drastic difference between our approach and all previous studies in

the literature.

4The remaining 3 cases are always unphysical [12].

– 6 –



J
H
E
P
0
8
(
2
0
0
9
)
1
0
4

1.4 Posing the problem

In the previous three subsections we discussed each of the three generic theoretical5 prob-

lems with the previous applications of the kinematic endpoint method for mass determi-

nation. We are now ready to explicitly formulate our main goal in this paper. We aim to

design a method for measuring the masses of the particles in the decay chain of figure 1,

which is based on kinematic endpoint information, and satisfies the following requirements:

• It does not make use of any kinematic endpoints whose interpretation is ambiguous,

i.e. whose expressions in terms of the physical masses are piecewise-defined functions.

• It does not make use of any lower kinematic endpoints such as the “threshold”

mmin
jℓℓ(θ> π

2
), due to the experimental challenges with such measurements.

• It relies solely on 1-dimensional distributions, unlike the methods recently advertised

in [18, 46, 47, 81, 82], which utilize 2-dimensional correlation plots. While the latter

do provide a wealth of valuable information, they also typically require more data

in order to obtain good enough statistics for drawing any robust conclusions from

them. In contrast, the one-dimensional distributions should be available rather early

on, and with sufficient statistics for endpoint measurements.

As already alluded to in the previous subsections, the first two requirements already elim-

inate four out of the five conventional inputs (1.18). Obviously, we will need to find a way

to replace those with an alternative set of kinematic endpoint measurements which nev-

ertheless satisfy the above requirements. In section 2 we introduce and investigate a new

set of invariant mass variables whose upper endpoints can be useful for our analysis. Then

in section 3 we outline our basic method, which makes use of some of these new variables.

We illustrate our discussion in section 4 with two numerical examples: the LM1 and LM6

CMS study points. Section 5 is reserved for our conclusions. In appendix A we supply the

analytic expressions for the shapes of the 1-dimensional invariant mass distributions used

in our main analysis in section 3.1. Those results can be useful in improving the precision

on the extraction of the kinematical endpoints.

2 New variables

In this section we propose a new set of invariant mass (squared) variables. As already

explained in the Introduction, our variables should be composed of m2
jℓn

and m2
jℓf

in a

symmetric way, in accordance with (1.13). Consequently, any plotting manipulations or

5In addition, there are problems which are of experimental nature, e.g. identifying the correct jet and the

correct lepton pair resulting from the decay chain in figure 1. There exists a set of standard experimental

techniques which are aimed at overcoming these problems, e.g. the opposite flavor subtraction for the two

leptons and the mixed event subtraction for the jet [83]. Wrong ℓℓ and jℓ pairings can also be identified

and a posteriori removed whenever an invariant mass entry for mℓℓ, mjℓ or mjℓℓ exceeds the corresponding

kinematic endpoint mmax
ℓℓ , mmax

jℓ(hi) or mmax
jℓℓ . In what follows we shall assume that those preliminary steps

have already been done and the samples we are dealing with have already been appropriately subtracted

to remove the combinatorial background.

– 7 –
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mathematical operations involving m2
jℓn

and m2
jℓf

should obey the symmetry implied by

eq. (1.13).

2.1 The union m2
jℓn

∪ m2
jℓf

We begin with the simplest case, where we postpone applying any mathematical operations

to m2
jℓn

and m2
jℓf

, and instead simply plot them. The requirement of eq. (1.13) implies

that the only possibility is to place both of them together on the same plot, in essence

forming the union

m2
jl(u) ≡ m2

jℓn
∪ m2

jℓf
(2.1)

of the individual m2
jℓn

and m2
jℓf

distributions. Since each individual distribution is smooth

and has a kinematic endpoint, the same two kinematic endpoints should be visible on the

combined distribution m2
jl(u) as well.6 We shall denote the larger of the two endpoints with

(

Mmax
jl(u)

)2
≡ max

{

(

mmax
jℓn

)2
,
(

mmax
jℓf

)2
}

(2.2)

and the smaller of the two endpoints with

(

mmax
jl(u)

)2
≡ min

{

(

mmax
jℓn

)2
,
(

mmax
jℓf

)2
}

. (2.3)

The newly introduced quantities Mmax
jl(u) and mmax

jl(u) are nothing but the usual kinematic

endpoints mmax
jℓn

and mmax
jℓf

, given by (1.3) and (1.4), correspondingly. Of course, at this

point we do not know which is which, and we have an apparent two-fold ambiguity: we

can have either

Mmax
jl(u) = mmax

jℓn
, mmax

jl(u) = mmax
jℓf

, if RAB ≥ RBC , (2.4)

or

Mmax
jl(u) = mmax

jℓf
, mmax

jl(u) = mmax
jℓn

, if RAB ≤ RBC . (2.5)

Notice that both (2.2) and (2.3) are officially upper kinematic endpoints, and thus satisfy

our basic requirements.

The benefits of our alternative treatment (2.1) in response to the near-far lepton am-

biguity problem of section 1.1, are now starting to emerge. With the conventional order-

ing (1.7), (1.8) one has to deal with a three-fold ambiguity in the interpretation of the

endpoints mmax
jℓ(lo) and mmax

jℓ(hi), as seen in eqs. (1.9), (1.10). Instead, the simple union (2.1)

leads only to the two-fold ambiguity of eqs. (2.4), (2.5). More importantly, the analy-

sis of section 3.1 below will reveal that in spite of the remaining two-fold ambiguity in

eqs. (2.4), (2.5), one can nevertheless uniquely determine all three of the masses mD, mC

and mA! We consider this to be one of the important results of this paper.

6For specific numerical examples, refer to section 4.
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2.2 The product mjℓn
× mjℓf

In the remainder of this section, we shall construct new invariant mass squared variables

out of the two entries m2
jℓn

and m2
jℓf

, simply by applying various mathematical operations

on them in a symmetric fashion. We begin with the product

m2
jℓ(p) ≡ mjℓn

mjℓf
(2.6)

whose endpoint is given by

(

mmax
jℓ(p)

)2
≡







1
2 m2

D(1 − RCD)
√

1 − RAB , for RBC ≤ 0.5,

m2
D(1 − RCD)

√

RBC(1 − RBC)(1 − RAB), for RBC ≥ 0.5.
(2.7)

Unfortunately, this endpoint also turns out to be piecewise-defined, thus failing one of our

basic requirements from the Introduction. Therefore we shall not use this endpoint in the

course of our analysis.

2.3 The sums m2α
jℓn

+ m2α
jℓf

Another possibility is to consider various sums, for example m2
jℓn

+m2
jℓf

or (mjℓn
+mjℓf

)2,

as originally proposed in [18]. Here we generalize the discussion in [18] and introduce a

whole set of new variables, m2
jℓ(s)(α), labelled by the continuous parameter α, which are

defined as

m2
jℓ(s)(α) ≡

(

m2α
jℓn

+ m2α
jℓf

)
1
α

. (2.8)

Since α is a continuous parameter, in principle there are infinitely many mjℓ(s) variables!

Notice that the conventional variables m2
jℓ(lo) and m2

jℓ(hi) from (1.7) and (1.8) are also

included in our set, and are simply given by

m2
jℓ(lo) ≡ m2

jℓ(s)(−∞) , (2.9)

m2
jℓ(hi) ≡ m2

jℓ(s)(∞) . (2.10)

We see that our new set (2.8) is a very broad generalization of the conventional defini-

tions (1.7) and (1.8), which just correspond to the two extreme cases α = ±∞. Of course,

the user is free to choose α at will, and any finite value of α will lead to a new variable

m2
jℓ(s)(α).

In order to make the new variables m2
jℓ(s)(α) useful for mass spectrum studies, we need

to provide the formulas for their kinematic endpoints (mmax
jℓ(s)(α))2. These formulas are easy

to derive, using the results from [47], and we present them in the next two subsections,

where it is convenient to consider separately the following two cases: α ≥ 1 (in section 2.3.1)

and α < 1, but α 6= 0 (in section 2.3.2).

2.3.1 Kinematic endpoints of m2
jℓ(s)(α) with α ≥ 1

When one chooses a value of α ≥ 1, the m2
jℓ(s)(α) endpoint is given by the following

expression

(

mmax
jℓ(s)(α ≥ 1)

)2
≡















(

mmax
jℓf

)2
, RAB ≤ 1 − (1 − RBC) (1 − Rα

BC)−
1
α ,

(

mmax
jℓ (α)

)2
, RAB ≥ 1 − (1 − RBC) (1 − Rα

BC)−
1
α ,

(2.11)
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where mmax
jℓf

was already defined in (1.4), and mmax
jℓ (α) is a newly defined, α-

dependent quantity

(

mmax
jℓ (α)

)2 ≡ m2
D(1 − RCD)

[

Rα
BC(1 − RAB)α + (1 − RBC)α

]
1
α

. (2.12)

As a cross-check, one can verify that in the limit α → ∞ the expression (2.11) reduces

to (1.10), in agreement with (2.10). In that case, the upper line in (2.11) corresponds to

options (−, 1) and (−, 2) in (1.10), where mmax
jℓ(hi) = mmax

jℓf
, while the lower line in (2.11)

corresponds to option (−, 3) in (1.10), where mmax
jℓ(hi) = mmax

jℓn
. Unfortunately, just like the

product endpoint (2.7), the endpoint (2.11) is in general piecewise-defined, and does not

meet our criteria.

However, there is one important exception, namely the case of α = 1, in which we do

get a singly defined function. According to the general definition (2.8), m2
jℓ(s)(α = 1) is

simply the sum of the two m2
jℓ entries in each event:

m2
jℓ(s)(α = 1) ≡ m2

jℓn
+ m2

jℓf
. (2.13)

Using the identity

m2
jℓℓ = m2

jℓn
+ m2

jℓf
+ m2

ℓℓ , (2.14)

(2.13) can be equivalently rewritten as

m2
jℓ(s)(α = 1) ≡ m2

jℓℓ − m2
ℓℓ . (2.15)

To find the expression for its endpoint, one can set α = 1 in (2.11), and then realize that

the logical condition for executing the upper line becomes RAB ≤ 0, which is impossible,

since the mass ratios Rij in (1.6) are always positive definite. Therefore, the endpoint

mmax
jℓ(s)(α = 1) is always calculated according to the lower line in (2.11), which results

in [18]
(

mmax
jℓ(s)(1)

)2
≡ m2

D(1 − RCD)(1 − RAC) . (2.16)

Note that this endpoint is perfect for our purposes since the formula (2.16) is always unique,

i.e. it is independent of the parameter space region. The variable m2
jℓ(s)(α = 1) will thus

play a crucial role in our analysis below.

2.3.2 Kinematic endpoints of m2
jℓ(s)(α) with α < 1 and α 6= 0

Finally, in the case when α < 1, but α 6= 0, the m2
jℓ(s)(α) endpoint is given by the following

expression

(

mmax
jℓ(s)(α < 1)

)2
≡











































(

mmax
jℓ (α)

)2
,

RBC ≥
[

1 + (1 − RAB)
α

α−1

]−1
,

m2
D(1 − RCD)

[

1 + (1 − RAB)
α

1−α

]
1−α

α
,

RBC ≤
[

1 + (1 − RAB)
α

α−1

]−1
,

(2.17)

– 10 –



J
H
E
P
0
8
(
2
0
0
9
)
1
0
4

where mmax
jℓ (α) was already defined in (2.12). Again as a cross-check, one can verify that

in the limit α → −∞ the expression (2.17) reduces to (1.9), in agreement with (2.9).

In the α → −∞ case, the upper line in (2.17) corresponds to option (−, 1) in (1.9),

where mmax
jℓ(lo) = mmax

jℓn
, while the lower line in (2.17) corresponds to options (−, 2) and

(−, 3) in (1.9), where mmax
jℓ(lo) = mmax

jℓ(eq). Unfortunately, the endpoint function (2.17) is

again piecewise-defined, and does not meet one of our basic criteria spelled out in the

introduction.

In passing, we note that the special case of α = 1
2 , which involves the linear sum of

the two masses

m2
jℓ(s)

(

α =
1

2

)

≡
(

mjℓn
+ mjℓf

)2
, (2.18)

was previously explored in [18, 84]. In that case, from (2.17) we find for its endpoint

(

mmax
jℓ(s)(

1

2
)

)2

≡











m2
D(1 − RCD)

(

√

RBC(1 − RAB) +
√

1 − RBC

)2
, RBC ≥ 1−RAB

2−RAB
,

m2
D(1 − RCD)(2 − RAB), RBC ≤ 1−RAB

2−RAB
.

(2.19)

2.4 The difference |m2
jℓn

− m2
jℓf

|

Finally, one can also consider a set of variables which involve the absolute value of differ-

ences between m2
jℓn

and m2
jℓf

. In analogy with (2.8), we can define another infinite set

of variables

m2
jℓ(d)(α) ≡

∣

∣

∣
m2α

jℓn
− m2α

jℓf

∣

∣

∣

1
α

. (2.20)

Once again, the user is free to consider arbitrary values of α. However, this freedom is

redundant, when it comes to the issue of the kinematic endpoints of the variables in (2.20).

It is not difficult to see that the endpoints of m2
jℓ(d)(α) are always given by

(

mmax
jℓ(d)(α)

)2
≡

(

Mmax
jl(u)

)2
(2.21)

and are in fact independent of α! Therefore, for the purposes of our discussion, it is sufficient

to consider just one particular value of α. In the following we shall only use α = 1:

m2
jℓ(d)(α = 1) ≡

∣

∣

∣
m2

jℓn
− m2

jℓf

∣

∣

∣
, (2.22)

which is the analogue of m2
jℓ(s)(α = 1) defined in (2.13).

The result (2.21) implies that the endpoint of (2.22) does not contain any new amount

of information, which was not already present in the two kinematic endpoints Mmax
jl(u) and

mmax
jl(u) discussed in section 2.1. Nevertheless, the independent measurement of (mmax

jl(d)(1))
2

can still be very useful, since it will mark the location of (Mmax
jl(u))

2 on the m2
jl(u) distribution.

Then one will be looking for the second endpoint (mmax
jl(u))

2 to the left, i.e. in the region of

smaller m2
jl(u) values.

This completes our discussion of the new invariant mass variables and their kinematic

endpoints. For our basic proof-of-principle measurement technique presented in the next
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section 3.1, we shall use only three of them, namely Mmax
jℓ(u), mmax

jℓ(u), and mmax
jℓ(s)(α = 1).

However, the remaining variables are in principle just as good, their only disadvantage

being that they failed our arbitrarily imposed condition at the beginning that the endpoint

functions should all be region independent. Of course, one could, and in fact should, use

all of the available kinematic endpoint information, which in a global fit analysis can only

increase the experimental precision of the sparticle mass determination.

3 Theoretical analysis

3.1 Our method and the solution for the mass spectrum

Our starting point is the set of four measurements

mmax
ℓℓ ,Mmax

jℓ(u),m
max
jℓ(u),m

max
jℓ(s)(α = 1) (3.1)

in place of the conventional set (1.18). It is easy to verify that the measurements (3.1)

are always independent of each other, and thus never suffer from the linear dependence

problem discussed in section 1.2.

Given the set of four measurements (3.1), it is easy to solve for the mass spectrum. To

simplify the notation, we introduce the following shorthand notation for the endpoints of

the mass squared distributions

L ≡ (mmax
ℓℓ )2 , M ≡

(

Mmax
jℓ(u)

)2
, m ≡

(

mmax
jℓ(u)

)2
, S ≡

(

mmax
jℓ(s)(α = 1)

)2
(3.2)

The solution for the mass spectrum is then given by

m2
D =

Mm(L + M + m − S)

(M + m − S)2
; (3.3)

m2
C =

MmL

(M + m − S)2
; (3.4)

m2
B =











ML(S−M)
(M+m−S)2

, if RAB ≥ RBC ,

mL(S−m)
(M+m−S)2 , if RAB ≤ RBC ;

(3.5)

m2
A =

L(S − m)(S − M)

(M + m − S)2
. (3.6)

It is easy to verify that the right-hand side expressions in these equations are always positive

definite, so that one can safely take the square root and compute the linear masses mD,

mC , mB and mA. Notice that in spite of the two-fold ambiguity (2.4), (2.5), the solution

for mD, mC and mA is unique! Indeed, the expressions for mD, mC and mA are symmetric

under the interchange M ↔ m. The remaining two-fold ambiguity for mB is precisely

the result of the ambiguous interpretation (2.4), (2.5) of the two m2
jℓ(u) endpoints, and is

related to the symmetry under (1.13), or equivalently, under the interchange

RAB ↔ RBC . (3.7)
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In the next subsection we discuss several ways in which one can lift the remaining two-fold

degeneracy for mB which is due to (3.7).

Notice the great simplicity of this method. The expressions for (3.3), (3.4) and (3.6)

are region independent and therefore one does not have to go through the standard trial

and error procedure involving the 9 parameter space regions (Njℓℓ, Njℓ) [12, 47] associated

with the various interpretations of the endpoints mmax
jℓℓ , mmax

jℓ(lo) and mmax
jℓ(hi).

3.2 Disambiguation of the two solutions for mB

The method outlined in section 3.1 allowed us to find the true masses of particles A, C

and D, but yields two separate possible solutions for the mass mB of particle B. We shall

now discuss several ways of lifting the remaining two-fold degeneracy for mB.

3.2.1 Invariant mass endpoint method

One possibility is to use an additional measurement of an invariant mass endpoint. Indeed,

as shown in sections 1 and 2, there are still quite a few one-dimensional invariant mass

distributions at our disposal, which we have not used so far. Those include the conventional

distributions of m2
jℓℓ, m2

jℓ(lo) and m2
jℓ(hi), as well as the new distributions m2

jℓ(p), m2
jℓ(s)(α)

and m2
jℓ(d)(1) which we introduced in section 2. Which of them can be used for our

purposes? Note that the duplication in (3.5) arose due to the symmetry (3.7), so that any

kinematic endpoint which violates this symmetry will be able to distinguish between the

two solutions.

Let us begin with the conventional distributions m2
jℓℓ, m2

jℓ(lo), m2
jℓ(hi) and m2

jℓℓ(θ> π
2
),

whose endpoints we did not use in our analysis so far. It is easy to check that mmax
jℓℓ ,

mmax
jℓ(hi) and mmin

jℓℓ(θ> π
2
) are invariant under the interchange (3.7) and cannot be used for

discrimination. However, mmax
jℓ(lo) is not symmetric under (3.7) and can do the job. In fact,

one can show that the two duplicate solutions for mB always7 give different predictions

for mmax
jℓ(lo).

More importantly, many of our new variables from section 2 can provide an independent

cross-check on the correct choice for the solution. For example, the kinematic endpoint (2.7)

of the product variable m2
jℓ(p), also violates the symmetry (3.7) and distinguishes among

the two solutions. The infinite set of variables m2
jℓ(s)(α) can also be used, and for almost the

whole range of α < 1. To see this, in figure 2 we compare the predictions for the kinematic

endpoints mmax
jℓ(s)(α) of the real and fake solutions, for the two examples discussed in detail

in section 4: (a) the LM1 CMS study point and (b) the LM6 CMS study point. The

corresponding mass spectra are listed in table 1 below. For convenience, we plot versus the

parameter

φ ≡ arctan α , (3.8)

which allows us to map the whole definition domain (−∞,∞) for α into the finite region

(−π
2 , π

2 ) for φ. Figure 2 shows that for most of the allowed φ range, the two solutions

predict different values for the kinematic endpoints mmax
jℓ(s)(α). In fact, for φ < π

4 , the two

7The only exception is the trivial case of RAB = RBC , but then the two solutions for mB coincide, and

mB is again uniquely determined.
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Figure 2. Comparison of the predictions for the kinematic endpoints mmax
jℓ(s)(α) of the real and fake

solutions, as a function of φ ≡ arctanα (in units of π), for the two examples discussed in detail in

section 4: (a) the LM1 CMS study point and (b) the LM6 CMS study point. In each panel, the

prediction of the real (fake) solution is plotted in red (blue). The vertical dotted line indicates the

case of φ = π
4 (α = 1), for which the two solutions give an identical answer, marked with a green

dot. The horizontal dotted lines show the corresponding asymptotic values mmax
jℓ(hi) and mmax

jℓ(lo),

obtained at α → ±∞ (φ → ±π
2 ).

predictions are always different, apart from the trivial case of φ = 0 (α = 0). Even for

φ > π
4 , there still exists a range of φ, for which, at least theoretically, a discrimination

can be made. The predictions are guaranteed to coincide only for φ = π
4 (α = 1) (as they

should, see (3.1)), and for a certain range of the largest possible values of φ.

3.2.2 Invariant mass correlations

Another way to resolve the twofold ambiguity in our solution (3.5) is to simply go back to

the original measurements of Mmax
jl(u) and mmax

jl(u) and already at that point try to decide which

of the two measured mjl(u) endpoints is mmax
jℓn

and which one is mmax
jℓf

. As already discussed

in [18, 46], this identification is in principle possible, if one considers the correlations

which are present in the two-dimensional distribution m2
jl(u) versus m2

ll. The basic idea

is illustrated in figure 3, where we show scatter plots of mjℓ(u) versus mℓℓ, for the two

examples used in figure 2 and discussed in detail later in section 4. Figure 3(a) (figure 3(b))

shows the result for the real (fake) solution corresponding to the LM1 study point, while

figures 3(c) and 3(d) show the analogous results for the LM6 study point. In each plot

we used 10,000 entries, which roughly corresponds to 20 fb−1 (200 fb−1) of data for the

actual LM1 (LM6) SUSY study point. Here and below we show the ideal case where we

neglect smearing effects due to the finite detector resolution, finite particle widths and

combinatorial backgrounds. All of our plots are at the parton level (using our own Monte-

Carlo phase space generator) and without any cuts. Notice that in order to avoid dealing

with the large numerical values of the squared masses, we use a quadratic power scale on

both axes, which allows us to preserve the simple shapes of the scatter plots when plotting

versus the linear masses themselves.

Figure 3 shows that the combined distribution m2
jl(u) is simply composed of the two

– 14 –
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Figure 3. Predicted scatter plots of mjℓ(u) versus mℓℓ, for the case of the real and fake solutions

for each of the two study points LM1 and LM6: (a) the real solution LM1; (b) the fake solution

LM1’; (c) the real solution LM6; and (d) the fake solution LM6’. The red solid horizontal (blue

dashed inclined) line indicates the conditional maximum mmax
jℓn

(mℓℓ) (mmax
jℓf

(mℓℓ)) given by eq. (3.9)

(eq. (3.10)). Each panel contains 10,000 entries. The results shown here are idealized in the sense

that we neglect smearing effects due to the finite detector resolution, finite particle widths and

combinatorial backgrounds. Notice the use of quadratic power scale on the two axes, which preserves

the simple shapes of the scatter plots, even when plotted versus the linear masses mjℓ(u) and mℓℓ.

separate distributions m2
jℓn

and m2
jℓf

, but they are correlated differently with the dilepton

distribution m2
ℓℓ. In particular, let us concentrate on the conditional maxima mmax

jℓn
(mℓℓ)

and mmax
jℓf

(mℓℓ), i.e. the maximum allowed values of mjℓn
and mjℓf

, respectively, for a given

fixed value of mℓℓ [18, 46]. A close inspection of figure 3 shows that the values of m2
jℓn

and m2
ℓℓ are uncorrelated, and as a result, the conditional maximum mmax

jℓn
(mℓℓ) does not

depend on mℓℓ. In turn, this implies that the endpoint value (mmax
jℓn

)2 given in (1.3) can

be obtained for any m2
ℓℓ:

n ≡
(

mmax
jℓn

)2
=

[

mmax
jℓn

(mℓℓ)
]2

= m2
D (1 − RCD) (1 − RBC), ∀mℓℓ ∈ [ 0,mmax

ℓℓ ] . (3.9)

Because of (3.9), the shape of the m2
jℓn

versus m2
ℓℓ scatter plot is a simple rectangle [18, 46].

This is confirmed by the plots in figure 3, where the (red) horizontal solid line indicates

the constant value (3.9) for the conditional maximum mmax
jℓn

(mℓℓ).
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In contrast, the values of m2
jℓf

and m2
ℓℓ are correlated. The conditional maximum

mmax
jℓf

(mℓℓ) does depend on the value of mℓℓ as follows:

(

mmax
jℓf

(mℓℓ)
)2

= p +
f − p

L
m2

ℓℓ , (3.10)

where we introduce the shorthand notation used in [47]

f ≡
(

mmax
jℓf

)2
= m2

D (1 − RCD) (1 − RAB), (3.11)

p ≡ RBC f = m2
D (1 − RCD)RBC (1 − RAB). (3.12)

The absolute maximum of m2
jℓf

, which is given by (1.4) and denoted here by f , can only

be obtained when m2
ℓℓ itself is at a maximum [18, 46]:

f ≡
[

mmax
jℓf

(mmax
ℓℓ )

]2
. (3.13)

On the other hand, the conditional maximum mmax
jℓf

(mℓℓ) obtains its minimum value at

m2
ℓℓ = 0 and corresponds to [18, 46]

p ≡
[

mmax
jℓf

(0)
]2

≤ f . (3.14)

Eqs. (3.13), (3.14) imply that the shape of the m2
jℓf

versus m2
ℓℓ scatter plot is a right-

angle trapezoid. This is confirmed by the plots in figure 3, where we mark with a (blue)

dashed line the conditional maximum (3.10). With sufficient statistics, this difference in

the kinematic boundaries may be observable, and would reveal the identity of mmax
jℓn

and

mmax
jℓf

[18, 46]. Once the individual mmax
jℓn

and mmax
jℓf

are known, the solution for the mass

spectrum is unique – see e.g. appendix A in [47]. Of course, in cases where p ∼ f , namely

RBC ∼ 1, it may be difficult in practice to tell which of the two boundaries in the scatter

plot is inclined and which one is horizontal.8 One example of this sort is offered by point

LM6, which has RBC = 0.91 and leads to a rather flat mmax
jℓf

(mℓℓ) function, as seen in

figure 3(c).

An alternative and somewhat related method will be to investigate the shapes of the

one-dimensional distributions themselves [85]. In appendix A we provide the analytical

expressions for the shapes of the four invariant mass distributions m2
ℓℓ, m2

jℓ(u), m2
jℓ(s)(1)

and m2
jℓ(d)(1) used in our basic analysis from section 3.1. Given what we have already seen

in figure 3, it is not surprising that the true and the fake solutions predict different shapes

for the one-dimensional distributions as well. In the LM1 and LM6 examples considered

below in section 4, this difference is particularly noticeable for the m2
jℓ(u) and m2

jℓ(d)(1)

distributions (see figures 4(b), 4(d), 5(b) and 5(d)), and can be tested experimentally.

3.2.3 MT2 endpoint method

Let us note that if we identify particle A with the LSP, we have a rather peculiar situation,

in which we know the LSP mass mA, and we are unsure about the NLSP mass MB , for

8A separate problem, which arises in the case of p ∼ f , will be discussed below in section 4.1.
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which we have to choose among two alternatives. This goes against the common lore which

considers the LSP mass (in this case mA) to be the least constrained among the masses

appearing in the decay chain in figure 1. For example, the method of the Cambridge MT2

variable [2, 8] treats the LSP mass as a continuous unknown parameter. At this point of our

analysis we already know the LSP mass, and we can use this knowledge to our advantage.

For example, if we can collect a sufficient number of events of B pair-production, we can

apply the idea of MT2 for the B → A decay as in the original MT2 proposal [2]. When

we use for the trial LSP mass the known true value of mA given by (3.6), the kinematic

endpoint of the MT2 distribution will reveal the correct value of the mass mB of the parent

particle B, thus selecting the true solution in (3.5).

As emphasized in ref. [43], the MT2 endpoint method does not necessarily rely on A

being the LSP (i.e. the very last particle in the decay chain) or B being the “grandparent”

(i.e. the very first particle in the decay chain). For example, suppose that A decays further.

In that case, one simply needs to apply the more general “subsystem” variable M
(n,p,c)
T2 [43]

with A being the “child” particle: c = A. Similarly, the two B particles do not have to

be the two grandparents initiating the decay chains: it is sufficient to consider M
(n,p,c)
T2

with p = B and arbitrary n [43]. Finally, for the purposes of selecting the correct solution

in (3.5) it is also possible to apply the subsystem variable M
(n,p,c)
T2 in a different way, where

B is the child, and the parent is either D or C. In this case, we know the parent mass,

which is respectively given by (3.3) or (3.4), and we are asking the question, which of the

two test masses in (3.5) gives the correct answer for the MT2 endpoint.

4 Numerical examples

We shall now illustrate the ideas of the previous section with two specific numerical ex-

amples: the LM1 and LM6 SUSY study points in CMS [83]. The mass spectra at LM1

and LM6 are listed in table 1. Point LM1 is similar to benchmark point A (A’) in ref. [86]

(ref. [87]) and to benchmark point SPS1a in ref. [88]. Point LM6 is similar to benchmark

point C (C’) in ref. [86] (ref. [87]). The table also lists the corresponding duplicate solu-

tions LM1’ and LM6’, which are obtained by interchanging RBC ↔ RAB , or equivalently,

by replacing the mass of B via

mB → m′
B =

mAmC

mB
. (4.1)

It is interesting to note that LM1 and LM6 represent both sides of the ambiguity (3.7):

at LM1, we have RAB > RBC and correspondingly, mmax
jℓn

> mmax
jℓf

and (2.4) applies. On

the other hand, at LM6 we have RAB < RBC and mmax
jℓn

< mmax
jℓf

, so that (2.5) applies.

Another interesting difference is that at LM1 particle B is the right-handed slepton ℓ̃R,

while at LM6 the role of particle B is played9 by the left-handed slepton ℓ̃L. Of course, to

the extent that we are interested in kinematical features, this difference is not relevant, and

particle B of the LM6 spectrum may very well have been the right-handed slepton instead.

9Although the right-handed slepton ℓ̃R is also kinematically accessible at point LM6, the wino-like

neutralino χ̃0
2 decays much more often to ℓ̃L as opposed to ℓ̃R.
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Variable LM1 LM1’ LM6 LM6’

mA (GeV) 94.9 158.15

mB (GeV) 118.9 143.35 291.0 165.65

mC (GeV) 179.6 304.8

mD (GeV) 561.6 861.9

RAB 0.6370 0.4383 0.2954 0.9115

RBC 0.4383 0.6370 0.9115 0.2954

RCD 0.1023 0.1251

mmax
ℓℓ (GeV) 81.10 76.12

Mmax
jℓ(u) (GeV) 398.8 676.8

mmax
jℓ(u) (GeV) 320.6 239.8

mmax
jℓ(s)(α = 1) (GeV) 451.8 689.2

mmax
jℓℓ (GeV) 451.8 689.2

mmin
jℓℓ(θ> π

2
) (GeV) 215.2 176.4

mmax
jℓ(hi) (GeV) 398.8 676.8

mmax
jℓ(s)(α = 2) (GeV) 406.6 398.8 676.8 677.0

mmax
jℓ(s)(α = 1.5) (GeV) 417.9 402.5 676.8 678.4

mmax
jℓ(s)(α = 0.5) (GeV) 611.0 638.9 886.0 807.1

mmax
jℓ(s)(α = −0.5) (GeV) 142.9 159.7 174.9 138.0

mmax
jℓ(s)(α = −1) (GeV) 200.1 225.9 224.8 184.8

mmax
jℓ(lo) (GeV) 274.6 319.1 239.8 229.9

mmax
jℓ(p) (GeV) 292.0 319.4 393.7 310.9

mmax
jℓn

(GeV) 398.8 320.6 239.8 676.8

mmax
jℓf

(GeV) 320.6 398.8 676.8 239.8

Table 1. The relevant part of the SUSY mass spectrum for the LM1 and LM6 study points. The

corresponding duplicated solutions LM1’ and LM6’ are obtained by interchanging RBC ↔ RAB as

in (3.7). In the table we also list the corresponding values for various invariant mass endpoints. The

first four of those represent our basic set of measurements (3.1) discussed in detail in section 4.1,

while the last two (mmax
jℓn

and mmax
jℓf

) are not directly observable. The remaining invariant mass

endpoints are considered in section 4.2. In the case of mmax
jℓ(s)(α), we show several representative

values for α. For the complete α variation, refer to figure 2. Recall that mmax
jℓ(s)(+∞) = mmax

jℓ(hi) and

mmax
jℓ(s)(−∞) = mmax

jℓ(lo).

4.1 Mass measurements at points LM1 and LM6

Given the mass spectra in table 1, it is straightforward to construct and investigate the

relevant invariant mass distributions. For the purposes of illustration, we shall ignore spin

correlations, referring the readers interested in those effects to refs. [52, 58, 71]. We are
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Figure 4. One-dimensional invariant mass distributions for the case of LM1 (red solid lines) and

LM1’ (blue dotted lines) spectra. The kinematic endpoints (3.1) used in our analysis in section 3.1

can be observed from these distributions as follows: mmax
ℓℓ is the upper kinematic endpoint of the

mℓℓ distribution in panel (a); Mmax
jℓ(u) is the absolute upper kinematic endpoint seen in both the

combined mjℓ(u) distribution in panel (b), or the difference distribution mjℓ(d)(1) in panel (d);

mmax
jℓ(u) is the intermediate kinematic endpoint seen in panel (b); and mmax

jℓ(s)(α = 1) is the upper

kinematic endpoint of the mjℓ(s)(α = 1) distribution in panel (c).

justified to do so for several reasons. First, our method relies on the measurement of kine-

matic endpoints, whose location is unaffected by the presence of spin correlations. Second,

in the case of supersymmetry (which is really what we have in mind here), particle B is a

scalar, which automatically washes out any spin effects in the m2
ℓℓ and m2

jℓf
distributions.

Furthermore, if particles D and their antiparticles D̄ are produced in equal numbers, as

would be the case if the dominant production is from gg and/or qq̄ initial state, any spin

correlations in the m2
jℓn

distribution are also washed out. Under those circumstances,

therefore, the pure phase space distributions shown here are in fact the correct answer.

We begin our discussion with the four invariant mass distributions m2
ℓℓ, m2

jℓ(u),

m2
jℓ(s)(α = 1) and m2

jℓ(d)(α = 1), which form the basis of our method outlined in sec-

tion 3.1. Figure 4 (figure 5) shows those four distributions for the case of study point

LM1 (LM6). In each panel, the red (solid) histogram corresponds to the nominal spec-

trum (LM1 or LM6), while the blue (dotted) histogram corresponds to the “fake” solution
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Figure 5. The same as figure 4, but for the LM6 mass spectrum (red solid lines) and the LM6’

mass spectrum (blue dotted lines).

(LM1’ or LM6’), which is obtained through the replacement (4.1). For all figures in this

section, we use the same 4 samples of 10,000 events each, which were already used to make

figure 3. Notice our somewhat unconventional way of filling and then plotting the his-

tograms in this section. First, we show differential distributions in the corresponding mass

squared, i.e. dN/dm2. This is done in order to preserve the connection to the analytical

results in appendix A, which are written the same way. More importantly, the shapes

of the one-dimensional histograms are much simpler in the case of dN/dm2 as opposed

to dN/dm [52, 58, 71]. In the next step, however, we choose to plot the thus obtained

histogram versus the mass itself rather than the mass squared. This allows one to read

off immediately the corresponding endpoint and compare directly to the values listed in

table 1. It also keeps the x-axis range within a manageable range. However, since the

histograms were binned on a mass squared scale, if we were to use a linear scale on the

x-axis, we would get bins with varying size. This would be rather inconvenient and more

importantly, would distort the nice simple shapes of the dN/dm2 distributions. Therefore,

we use a quadratic scale on the x-axis, which preserves the nice shapes and leads to a

constant bin size on each plot.

Figures 4 and 5 illustrate how each one of the measurements (3.1) can be obtained.
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For example, mmax
ℓℓ is the classic upper kinematic endpoint of the mℓℓ distributions in fig-

ures 4(a) and 5(a). This endpoint is very sharp and should be easily observable. Mmax
jℓ(u)

is the absolute upper kinematic endpoint seen in the combined mjℓ(u) distribution in fig-

ures 4(b) and 5(b). Notice that the same endpoint can independently also be observed

as the absolute upper kinematic limit of the difference distributions mjℓ(d)(1) shown in

figures 4(d) and 5(d). The fact that there are two independent ways of getting to the

endpoint Mmax
jℓ(u) should allow for a reasonable accuracy of its measurement. Upon closer

inspection of the combined mjℓ(u) distribution in figures 4(b) and 5(b), we also notice the

intermediate kinematic endpoint mmax
jℓ(u) seen around 320 GeV in figure 4(b) and around

240 GeV in figure 5(b). Finally, mmax
jℓ(s)(α = 1) is the upper kinematic endpoint of the

mjℓ(s)(α = 1) distribution shown in figures 4(c) and 5(c). It is also rather well defined, and

should be well measured in the real data.

At this point we would like to comment on one potential problem which is not im-

mediately obvious, but nevertheless has been encountered in practical applications of the

invariant mass technique for SUSY mass determinations [85]. It has been noted that in

the case of p ∼ f (see eqs. (3.11), (3.12)), the numerical fit for the mass spectrum be-

comes rather unstable. Given our analytical results in section 3.1, we are now able to trace

the root of the problem. Notice that p ∼ f implies that RBC ∼ 1. In this limit, from

eqs. (1.2), (1.3), (1.4) and (2.16) we find

lim
RBC→1

(L) = 0, lim
RBC→1

(n) = 0, lim
RBC→1

(M + m − S) = 0. (4.2)

This means that the functions (3.3)–(3.6) giving the solution for the mass spectrum will

all behave as 02

02 , and, given the statistical fluctuations in an actual analysis, will have very

poor convergence properties. We note that this problem is not limited to our preferred set

of measurements (3.1) and is rather generic, but has been missed in most previous studies

simply because the case of RBC ∼ 1 was rarely considered.

figures 4 and 5 reveal that, as expected, the real (red solid lines) and fake (blue dotted

lines) solutions always give identical results for our basic set of four endpoint measure-

ments (3.1). This is by design, and in order to discriminate among the real and the fake

solution, we need additional experimental input, as discussed in section 3.2. Before we

proceed with the disambiguation analysis in the next subsection, we should stress once

again that the real and fake solutions agree on 75% of the relevant mass spectrum, i.e.

they give the same values for the masses of particles D, C and A (see table 1). The only

question mark at this point is, what is the mass of particle B. This issue is addressed in

the following subsection.

4.2 Eliminating the fake solution for mB

As already discussed in section 3.2, there are several handles which could discriminate

among the two alternative values of mB in the real and the fake solution. One possibility,

reviewed in section 3.2.3, is to use additional independent measurements of MT2 kine-

matic endpoints. We shall not pursue this direction here, referring the interested readers

to ref. [43] for details. Another possibility, discussed in section 3.2.2 and demonstrated
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explicitly with figure 3, is to use the different correlations in the 2-dimensional invariant

mass distributions (m2
ℓℓ,m

2
jℓn

) and (m2
ℓℓ,m

2
jℓf

). The near-far lepton ambiguity is avoided

by studying the scatter plot of (m2
ℓℓ,m

2
jℓ(u)), shown in figure 3, which should be in principle

sufficient to discriminate among the two alternatives.

In keeping with the main theme of this paper, in this subsection we shall concentrate on

the third possibility, already suggested in section 3.2.1. We shall simply explore additional

invariant mass endpoint measurements, which would hopefully discriminate among the two

solutions for mB . Figures 6 and 7 show several invariant mass distributions which have

already been mentioned at one point or another in the course of our previous discussion.

Figure 6 shows the following 6 distributions: (a) m2
jℓℓ; (b) m2

jℓ(hi); (c) m2
jℓ(p); (d) m2

jℓ(lo);

(e) m2
jℓ(s)(α = −1) and (f) m2

jℓ(s)(α = 1
2), for the LM1 mass spectrum (red solid lines) and

its LM1’ counterpart (blue dotted lines). Figure 7 shows the same 6 distributions, but for

the LM6 and LM6’ mass spectra. In both figures, we follow the same plotting conventions

as in figures 4 and 5: we form the mass squared distribution dN/dm2, and then plot versus

the corresponding linear mass m using a quadratic scale on the x-axis. Notice that the

sum of the m2
jℓ(hi) distribution in figure 6(b) (figure 7(b)) and the m2

jℓ(lo) distribution in

figure 6(d) (figure 7(d)) precisely equals the combined distribution m2
jℓ(u) in figure 4(b)

(figure 5(b)). In order to be able to see this by the naked eye, we have kept the same x

and y ranges on the corresponding plots.

As seen in figures 6 and 7, not all of the remaining invariant mass distributions are able

to discriminate among the two mB solutions. As explained in section 3.2.1, the suitable

distributions are those whose endpoints violate the symmetry (3.7), which caused the mB

ambiguity in the first place. For example, figures 6(a) and 7(a) show that the endpoint of

the m2
jℓℓ distribution is the same for the real and the fake solution. This is to be expected,

since the defining expression (1.5) for mmax
jℓℓ is symmetric under (3.7). Figures 6(a) and 7(a)

also show that even the shapes of the m2
jℓℓ distributions for the real and fake solution are

very similar. In spite of this, the observation of the m2
jℓℓ endpoint can still be very useful,

e.g. in reducing the experimental error on the mass determination.

Similar comments apply to the m2
jℓ(hi) distributions shown in figures 6(b) and 7(b).

Here again the endpoint is a symmetric function of RAB and RBC , and the real and fake

solutions predict identical endpoints. However, while the endpoints are the same, this time

the shapes are not. The shape difference is more pronounced in the case of LM1 shown in

figure 6(b), and less visible in the case of LM6 shown in figure 7(b).

The remaining four distributions shown in figures 6(c-f) and 7(c-f) already have dif-

ferent endpoints and can thus be used for discrimination among the real and fake solution

for mB . All of the endpoints in figures 6(c-f) and 7(c-f) are relatively sharp and should

be measured rather well. One should not forget that in figures 6 and 7 we show m2
jℓ(s)(α)

distributions for only three representative values of α: α = −∞ in panels (d), α = −1

in panels (e), and α = 0.5 in panels (f). As seen in figure 2, there are infinitely many

other choices for α, which would still exhibit different endpoints for the real and fake mB

solutions. Our conclusion is that through a suitable combination of additional endpoint

measurements one would be able to tell apart the real solution for mB from its fake cousin.
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Figure 6. Some other one-dimensional invariant mass distributions of interest, for the case of

the LM1 mass spectrum (red solid lines) and LM1’ mass spectrum (blue dotted lines): (a) m2
jℓℓ

distribution; (b) m2
jℓ(hi) distribution; (c) m2

jℓ(p) distribution; (d) m2
jℓ(lo) distribution; (e) m2

jℓ(s)(α =

−1) distribution; (f) m2
jℓ(s)(α = 1

2 ) distribution. All distributions are then plotted versus the

corresponding mass, on a quadratic scale for the x-axis.

5 Summary and conclusions

In this paper we revisited the classic technique for SUSY mass determinations via invariant

mass endpoints. We set out to redesign the standard algorithm for performing these studies,
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Figure 7. The same as figure 6, but for the LM6 mass spectrum (red solid lines) and the LM6’

mass spectrum (blue dotted lines).

by pursuing two main objectives (see section 1.4):

• Improving on the experimental precision of the SUSY mass determination. For ex-

ample, we required that our analysis be based exclusively on upper invariant mass

endpoints, which are expected to be measured with a greater precision than the cor-

responding lower endpoints (a.k.a. thresholds). Consequently, we did not make use

of the “threshold” measurement mmin
jℓℓ(θ> π

2
), which has been an integral part of most
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SUSY studies since ref. [7]. In the same vein, we also demanded that we should

not rely on any features observed in a two- or a three-dimensional invariant mass

distribution — such measurements are expected to be less precise than the (upper)

endpoints extracted from simple one-dimensional histograms.

• Avoiding any parameter space region ambiguities. It is well known that some of

the invariant mass endpoints used in the conventional analyses are piecewise-defined

functions. This feature may sometimes lead to multiple solutions for the SUSY mass

spectrum in the “LHC inverse problem” [12, 47, 78–80]. In order to safeguard against

this possibility, we conservatively demanded from the outset that none of our endpoint

measurements be given by piecewise defined functions. This rather strict requirement

rules out three of the standard endpoint measurements mmax
jℓℓ , mmax

jℓ(lo), and mmax
jℓ(hi).

In order to meet these objectives, in section 2 we proposed a set of new invariant

mass variables whose upper kinematic endpoints can be alternatively used for SUSY mass

reconstruction studies. Then in section 3 we outlined a simple analysis which was based on

the particular set of four invariant mass variables (3.1), all of which satisfy our requirements.

In section 3.1 we provided simple analytical formulas for the SUSY mass spectrum in terms

of the four measured endpoints in eq. (3.1). Our solutions revealed a surprise: in spite of

the two-fold ambiguity (2.4), (2.5) in the interpretation of two of our endpoints Mmax
jℓ(u) and

mmax
jℓ(u), the answer for three (mD, mC and mA) out of the four SUSY masses is unique!

The fourth mass (mB) is also known, up to the two-fold ambiguity (4.1), which can be

easily resolved by a variety of methods discussed and illustrated in sections 3.2 and 4.2.

In section 4 we applied our technique to two specific examples — the LM1 and LM6 CMS

study points.

Our method contains a number of elements which help in achieving our two main

objectives. For example, the precision of the SUSY mass determination is expected to

improve, due to the following factors:

1. Precise knowledge of the whole shape of the invariant mass distribution. In ap-

pendix A we list the analytical expressions for all differential invariant mass dis-

tributions used in our basic analysis from section 3.1: m2
ℓℓ, m2

jℓ(u) and m2
jℓ(s)(1). We

also provide the corresponding expression for the m2
jℓ(d)(1) distribution, whose upper

endpoint offers an independent measurement of Mmax
jℓ(u) (see eq. (2.21)). Finally, we

also list the formula for the differential distribution of m2
jl(p), whose endpoint can be

used for selecting the correct mB solution, as shown in figures 6(c) and 7(c). The

knowledge of the shape of the whole distribution is indispensable and greatly improves

the accuracy of the endpoint extraction. In the absence of any analytical results like

those in appendix A, one would be forced to use simple linear extrapolations, which

would lead to a significant systematic error.

2. The number of available measurements tremendously exceeds the number of unknown

mass parameters. In principle, in order to extract 4 mass parameters, one needs a set

of 4 measurements, for which we chose (3.1). On the other hand, section 2 contains a

number of additional variables, whose endpoints will also be measured, and possibly
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even better than our basic set (3.1). The addition of these extra measurements cannot

hurt, and can only improve the overall accuracy of the SUSY mass determinations.

3. Improved precision on the endpoint measurements. Clearly, not all invariant mass

variables will have their endpoints measured with exactly the same precision — some

endpoints will be measured better than others. This difference can be due to many

factors, e.g. the slope of the distribution near the endpoint, the shape (convex versus

concave) of the distribution near the endpoint, the actual location of the endpoint,

the level of SM and SUSY combinatorial background near the endpoint, etc. Our

analysis in section 3.1 was based on a specific set of 4 endpoint measurements (3.1),

which were chosen due to the simplicity in their theoretical interpretation. However,

these may not necessarily be the best measured endpoints. In fact one can already

anticipate from figures 6 and 7 that the endpoints of some of the mjℓℓ, mjℓ(lo), mjℓ(p)

and mjℓ(s)(α 6= 1) distributions might be measured even better. For example, the dis-

tributions in figures 6(c), 6(e) and 6(f) are all steeper near their endpoints, compared

to the distribution in figure 4(c) that we used. By the same token, one might expect

that the endpoints in figures 7(a), 7(d) and 7(e) will be measured more precisely than

the upper endpoints of figures 5(b) and 5(d).

4. Controlled selection of an optimum set of measurements. Notice that the variable

m2
jℓ(s)(α) defined in eq. (2.8) depends on a continuous parameter α whose value can

be dialed up by the experimenter at will. This has several advantages. For example,

as we have seen in figure 2, the discriminating power of m2
jℓ(s)(α) in rejecting the

wrong solution in (3.5) depends on the value of α. Having obtained a preliminary

information about the two competing solutions, one can then choose the optimum

value (or a range of values) for α for a subsequent study. Similarly, after the initial

solution for the mass spectrum has been obtained, one can analyze by Monte Carlo

the shapes of the m2
jℓ(s)(α) distributions as a function of α and select for further study

specific values of α for which the corresponding endpoints mmax
jℓ(s)(α) are expected to

be measured with a much better experimental precision.

In meeting our second objective, our method shows a certain improvement on the

theoretical side as well:

1. Reduced sensitivity to the parameter space region. All of the new variables introduced

in section 2 exhibit milder sensitivity to the parameter space region, in comparison

to the conventional endpoint mmax
jℓℓ . As can be seen from the formulas in section 2,

the endpoint for each of our variables is given by at most two different expressions,

as opposed to four in the case of mmax
jℓℓ . A notable exception is the variable mjℓ(s)(1),

whose endpoint is actually uniquely predicted, and is independent of the parameter

space region. We therefore strongly encourage the use of mjℓ(s)(1) in future analyses

of SUSY mass determinations.

2. Uniqueness of the solution. It is worth emphasizing that with only the 4 measure-

ments of eq. (3.1) we can already uniquely determine three out of the four masses
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involved in the problem. Then, the addition of a fifth measurement, as discussed

in sections 3.2.1 and 4.2, is sufficient to pin down all four of the SUSY masses. In

contrast, with the conventional approach, one also starts with four measurements

as in (1.12), but in the worst case scenario this results in infinitely many solutions,

due to the linear dependence problem (1.14) discussed in section 1.2. Adding a fifth

measurement as in (1.18) helps, but once again, the worst case scenario leads to two

alternative solutions [47]. In order to resolve the remaining duplication, and thus

guarantee uniqueness of the solution under any circumstances, one needs at least 6

measurements.

In conclusion, our main accomplishment in this paper was to expand the experimenter’s

arsenal with several new tools which can be used for SUSY mass determinations via kine-

matic endpoints. We believe that the variables suggested in section 2 and the shapes of

their distributions listed in appendix A will eventually find their way into the actual ex-

perimental analyses after the discovery of SUSY (or any other new physics exhibiting the

decay chain of figure 1).
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A Analytical expressions for the shapes of the invariant mass distribu-

tions

In this appendix we will provide the analytical expressions for the shapes of the invariant

mass distributions m2
ℓℓ, m2

jℓ(u) ≡ m2
jℓn

∪m2
jℓf

, m2
jℓ(s)(1) ≡ m2

jℓn
+m2

jℓf
, m2

jℓ(d)(1) ≡ |m2
jℓn

−
m2

jℓf
|, and m2

jl(p). To simplify the expressions, we introduce the shorthand notation for the

corresponding endpoints, which was already introduced in (3.2), (3.9), (3.11) and (3.12):

L ≡ (mmax
ℓℓ )2 = m2

D RCD (1 − RBC) (1 − RAB), (A.1)

n ≡
(

mmax
jℓn

)2
= m2

D (1 − RCD) (1 − RBC), (A.2)

f ≡
(

mmax
jℓf

)2
= m2

D (1 − RCD) (1 − RAB), (A.3)

p ≡ RBC f = m2
D (1 − RCD)RBC (1 − RAB). (A.4)

In this appendix, we shall ignore spin correlations and consider only pure phase space

decays. General results including spin correlations for m2
ℓℓ, m2

jℓn
and m2

jℓf
exist and can be

found in [71]. We shall unit-normalize the m2
ℓℓ, m2

jℓ(s), m2
jℓ(d) and m2

jℓ(p) distributions, to

which each event contributes a single entry. In contrast, the union distribution m2
jℓ(u) has

two entries per event, so it will be normalized to 2 instead. It is also convenient to write

the distributions in terms of masses squared instead of linear masses. Of course, the two

are trivially related by
dN

dm
= 2m

dN

dm2
. (A.5)
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A.1 Dilepton mass distribution m2
ℓℓ

The differential dilepton invariant mass distribution is given by

dN

dm2
ℓℓ

=
1

L
, (A.6)

which is unit-normalized:
∫ L

0
dm2

ℓℓ

(

dN

dm2
ℓℓ

)

= 1 . (A.7)

A.2 Combined jet-lepton mass distribution m2
jℓ(u)

The differential distribution for u ≡ m2
jℓ(u) is given by

dN

du
= θ (n − u) θ (u)

1

n
+ θ (p − u) θ (u)

ln(f/p)

f − p
+ θ (f − u) θ (u − p)

ln(f/u)

f − p
, (A.8)

where θ(x) is the usual Heaviside step function

θ(x) ≡
{

1, x ≥ 0,

0, x < 0.
(A.9)

It is easy to verify the normalization condition
∫ M

0
du

(

dN

du

)

= 2, (A.10)

where M ≡ (Mmax
jℓ(u))

2 was already defined in (3.2).

In figure 8(a) we cross-check the prediction of eq. (A.8) (blue dashed line) with the

numerically obtained m2
jℓ(u) distribution in figure 4(b) (red solid line), for the case of study

point LM1. We see that within the statistical errors, our formula is in perfect agreement

with the numerical result.

A.3 Distribution of the sum m2
jℓ(s)(α = 1)

The differential distribution for σ ≡ m2
jℓ(s)(α = 1) is given by

dN

dσ
=

1

f − p

{

θ(m − σ) θ(σ) ln

(

fn

fn − σ(f − p)

)

+θ(M − σ) θ(σ − m) ln

(

M

M − (f − p)

)

+θ(n + p − σ) θ(σ − M) ln

(

fn − σ(f − p)

p(n + p − f)

)

}

, (A.11)

where m ≡ (mmax
jℓ(u))

2 was defined in (3.2), and n, f and p were defined in (A.2)–(A.4). The

normalization condition for (A.11) reads
∫ S

0
dσ

(

dN

dσ

)

= 1 , (A.12)

where S is defined in (3.2).

As a cross-check, figure 8(b) shows that our analytical formula in eq. (A.11) agrees

with the numerical result from figure 4(c) for the LM1 study point.
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Figure 8. Comparison of the numerically obtained differential invariant mass distributions for

study point LM1 (red solid lines) with the analytical results presented in this appendix (blue

dashed lines): (a) the distribution of the combined jet-lepton mass u ≡ m2
jℓ(u) from figure 4(b)

versus the analytical prediction of eq. (A.8); (b) the distribution of the sum σ ≡ m2
jℓ(s)(α = 1)

from figure 4(c) versus the analytical prediction of eq. (A.11); (c) the distribution of the difference

∆ ≡ m2
jℓ(d)(α = 1) from figure 4(d) versus the analytical prediction of eqs. (A.15)–(A.19); (d)

the distribution of the product ρ ≡ m2
jl(p) from figure 6(c) versus the analytical prediction of

eqs. (A.22)–(A.23).

A.4 Distribution of the difference m2
jℓ(d)(α = 1)

The differential distribution for the difference ∆ ≡ m2
jℓ(d)(α = 1) depends on the values of

RBC and RAB . To simplify the notation, we define an antisymmetric function

L(x, y) = −L(y, x) ≡ ln

(

nf + x(f − p)

nf + y(f − p)

)

, (A.13)

which we heavily use in writing down the result for the differential ∆ distribution. Notice

that there are various equivalent ways to write down these formulas, due to the transitiv-

ity property

L(x, y) + L(y, z) = L(x, z) . (A.14)

For ∆ ≡ m2
jℓ(d)(α = 1) one needs to consider five separate cases:
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• If 2
3−RAB

≤ RBC < 1, then

dN

d∆
=

1

f − p

{

θ(n − ∆) θ(∆)
[

L(0,−n) + L(−∆,−n)
]

+θ(p − n − ∆) θ(∆ − n)L(0,−n)

+θ(f − ∆) θ(∆ − (p − n))L(f,∆)

}

. (A.15)

• If 1
2−RAB

≤ RBC < 2
3−RAB

, then

dN

d∆
=

1

f − p

{

θ(p − n − ∆) θ(∆)
[

L(0,−n) + L(−∆,−n)
]

+θ(n − ∆) θ(∆ − (p − n))
[

L(f,∆) + L(−∆,−n)
]

+θ(f − ∆) θ(∆ − n)L(f,∆)

}

. (A.16)

• If RAB ≤ RBC < 1
2−RAB

, then

dN

d∆
=

1

f − p

{

θ(n − p − ∆) θ(∆)
[

L(f,∆) + L(f, 0)
]

+θ(n − ∆) θ(∆ − (n − p))
[

L(f,∆) + L(−∆,−n)
]

+θ(f − ∆) θ(∆ − n)L(f,∆)

}

. (A.17)

• If RAB

2−RAB
≤ RBC < RAB, then

dN

d∆
=

1

f − p

{

θ(n − p − ∆) θ(∆)
[

L(f,∆) + L(f, 0)
]

+θ(f − ∆) θ(∆ − (n − p))
[

L(f,∆) + L(−∆,−n)
]

+θ(n − ∆) θ(∆ − f)L(−∆,−n)

}

. (A.18)

• If 0 ≤ RBC < RAB

2−RAB
, then

dN

d∆
=

1

f − p

{

θ(f − ∆) θ(∆)
[

L(f,∆) + L(f, 0)
]

+θ(n − p − ∆) θ(∆ − f)L(f, 0)

+θ(n − ∆) θ(∆ − (n − p))L(−∆,−n)

}

. (A.19)
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The normalization condition now reads

∫ M

0
d∆

(

dN

d∆

)

= 1 . (A.20)

As before, in figure 8(c) we compare the prediction of our analytical formula in

eqs. (A.15)–(A.19) to the numerical result obtained earlier in figure 4(d) for the LM1

study point, and we find very good agreement.

A.5 Distribution of the product m2
jℓ(p)

Finally, for completeness we also list the differential distribution for the product vari-

able (2.6), for which here we shall use the shorthand notation ρ ≡ m2
jl(p). To further

simplify the notation, we define the function

X±(ρ) ≡
√

n

2(f − p)

(√
nf ±

√

f2n + 4(p − f)ρ2
)

, (A.21)

where n, f and p are defined as before in (A.2)–(A.4). There are two separate cases:

• If RBC ≤ 0.5, the ρ distribution is made up of two branches joining at ρ =
√

n p

(see, for example the LM1 distribution in figure 6(c) and the LM6’ distribution in

figure 7(c))

dN

dρ
=

2 ρ

n f

{

θ (
√

n p − ρ) θ(ρ)

[

ln

(

n

p

)

+ 2 ln

(

ρ

X−(ρ)

)]

+θ

(

f
√

n

2
√

f − p
− ρ

)

θ(ρ −√
n p) 2 ln

(

X+(ρ)

X−(ρ)

)

}

. (A.22)

• If RBC ≥ 0.5, there is a single branch, as illustrated by the LM1’ distribution in

figure 6(c) and the LM6 distribution in figure 7(c):

dN

dρ
=

2 ρ

n f
θ(
√

n p − ρ) θ(ρ)

{

ln

(

n

p

)

+ 2 ln

(

ρ

X−(ρ)

)

}

. (A.23)

In both of those cases, the normalization condition is

∫ ρmax

0
dρ

(

dN

dρ

)

= 1 , (A.24)

where ρmax is the corresponding m2
jl(p) endpoint defined in (2.7).

Figure 8(d) demonstrates that our analytical result (A.22) agrees well with the numer-

ically derived m2
jl(p) distribution in figure 6(c) for the LM1 study point.
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